很好,经过热交换器,这些5bar,00k的压缩气体被保存在一个大储气罐中,经过一个喷嘴阀门开始呼呼的喷气,这是另一个绝热膨胀过程。
那么再次搬出气体绝热过程公式,这些气体膨胀到bar(个大气压)以后,体积增大到了5倍。温度从00k降到9k,约合零下度。
李治同学的脑海里又出现一副可怕的情景:李世民穿着数层毛皮,眉毛上满是冰凌,冻得鼻涕横流,然后哀求道:儿子,把空调关了吧,这尼玛也太冷了啊!
设计出了问题吗?没错,因为5bar的气压数值是假定给定的。如果调节储气罐的出气阀门的出气速度,那么可以把压缩后的气压维持到一个比较小的程度。这样就不会出现压缩后温度过高,或者膨胀后温度过低的窘况了。
无论如何,经过连续几天的奋战,铁匠铺终于完成了四个气缸缸体,气缸盖,活塞和曲轴连杆的铸造,最后和曲轴一起组装起来。这就组成了李治空调的机体。然后把进气管和出气管都接到热交换器上,然后热交换器的高压出气管接到储气罐。储气罐上装有气压计,以这个为依据来调节气温。比如我们可以在5个大气压的读数位置再标记上(-度)的数值。
储气罐的出气口是一个普通的调节阀,阀门的开口接着一个喇叭状的膨胀圆锥,用以使气体均匀膨胀,减小噪音和涡流。这个膨胀圆锥的末端,连着薄铜片打造的贝壳状的导流槽。经过膨胀后的低温空气按照导流槽安装方式的不同,从完全开放式(所有降温气体都会导向房间内)到完全闭合式(所有降温气体都会收回到进气道进行热交换)。进气口设有滤,把低温空气导入热交换器,从活塞压缩机的出气口获得热量后再进入气缸压缩。如此就形成一个热循环。制冷膨胀圆锥是制冷机制冷量最大的地方。只要调高储气罐的气压,制冷温度就会降到零度以下,可以在夏天实现制取冰块和各种冰镇饮料。降低储气罐的气压,又可以提高整个系统的制冷效率,完成对室温降温0度左右的目标。
同志们,朋友们,李治穿越到唐代以来,终于在实质上发威,自主设计建造出一个利国利民的产品:冷柜兼空调机。
请注意,这个不是抄袭,不是仿制格力美的,是彻底原创,具有完全的核心技术和自主知识产权,并且在生产上实现了百分之百零部件自己制造,没有依靠国外进口技术和进口设备。它的优点有:可调温度范围大(-度啊亲)。无污染,无泄漏危险。使用清洁能源,排放远超欧v标准。(马吃粮食和草料,马粪是绿色环保燃料),完美达到可持续发展的目标。功率配备灵活,从零点几马力到数十马力都可以配备,适用范围特别大。在普通空调功能上,效率特别高。制冷耗能比可以达到0以上(只需把在储气罐的气压调到比较低的位置即可,作为对比,现代空调的数据为)
为了解释制造这个玩意儿在唐代的技术水准下是完全可行的,接下来解释它的部件的材料,和加工制造方法。
气缸:铸铁,铸青铜都可以。可以用铸青铜作为缸体,熟铁打造的圆柱体作为缸套。缸套在初步打磨以后,采用表面渗碳硬化处理。缸套中部开有两个润滑油孔。关于缸套的光滑度,用越王勾践剑表面的打磨水平可以描述……不是瞎说,根据当时出土的青铜齿轮的实物,有理由认为它是经过车床机械加工的。它的打磨程度和机械花纹的稳定程度不是人手可以达到的。
活塞和气缸一样,使用熟铁和青铜都可以,铸造之后通过活塞柄固定后进行圆周打磨出均匀光滑活塞边缘。加工精度就没法保证,但考虑到活塞承受的压力有限,也是很好达到的,只要在活塞上留足加工余量,多的磨掉就ok了!
活塞销钉,活塞连杆和曲轴就更简单了。甚至在柴油机上,曲轴都有用整体铸造的。只要在轴上加好润滑就ok。
气缸套上的单向气阀:铸造时预留出圆孔,然后用铜加工出单向阀的喇叭形的铆钉形状,在反面用弹簧顶住,这样气体逆流时会因为压力差让这个阀门自动闭合。
热交换器:铜片打造而成。接缝用鱼胶(就是制弓用的胶水)密封。对于五个大气压这样低的气压值,薄铜就有足够的强度。
储气罐加安全阀和压力计:整体铸造后,接缝处铜汁浇铸密封或者鱼胶密封。
压力计就是一个很小的活塞,利用静流体内压力相等的原理,在活塞上加重物,直至活塞缓慢下落。调节这个重物的重量就可以读出气体压力。比如这个小活塞的截面为一厘米的平方,自重为oo克。当罐内气压为个大气压,也就是0000pascal,意味着截面上受到牛的力,差不多等于2公斤,正好可以把这个活塞顶起来。如果在上面加4公斤的重物,那么等到5个大气压的时候,这个活塞才会被顶起来。这个压力计可以兼作安全阀。
膨胀阀门也很简单,铸造就ok。
就这样,完工!